Generalised cosets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauging Cosets

We show how to gauge the set of raising and lowering generators of an arbitrary Lie algebra. We consider SU(N) as an example. The nilpotency of the BRST charge requires constraints on the ghosts associated to the raising and lowering generators. To remove these constraints we add further ghosts and we need a second BRST charge to obtain nontrivial cohomology. The second BRST operator yields a g...

متن کامل

Smarandache Cosets

This paper aims to study the Smarandache cosets and derive some interesting results about them. We prove the classical Lagranges theorem for Smarandache semigroup is not true and that there does not exist a one-to-one correspondence between any two right cosets. We also show that the classical theorems cannot be extended to all Smarandache semigroups. This leads to the definition of Smarandache...

متن کامل

Heterotic Cosets

A description is given of how to construct (0, 2) supersymmetric conformal field theories as coset models. These models may be used as non–trivial backgrounds for Heterotic String Theory. They are realised as a combination of an anomalously gauged Wess–Zumino–Witten model, right–moving supersymmetric fermions, and left–moving current algebra fermions. Requiring the sum of the gauge anomalies fr...

متن کامل

Cosets and genericity

In a connected group of finite Morley rank in which the generic element belongs to a connected nilpotent subgroup, proper normalizing cosets of definable subgroups are not generous. We explain why this is true and what consequences this has on an abstract theory of Weyl groups in groups of finite Morley rank. The only known infinite simple groups of finite Morley rank are the simple algebraic g...

متن کامل

18.703 Modern Algebra, Cosets

Consider the group of integers Z under addition. Let H be the subgroup of even integers. Notice that if you take the elements of H and add one, then you get all the odd elements of Z. In fact if you take the elements of H and add any odd integer, then you get all the odd elements. On the other hand, every element of Z is either odd or even, and certainly not both (by convention zero is even and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2020

ISSN: 1029-8479

DOI: 10.1007/jhep09(2020)044